IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 11, NOVEMBER 1993

1981

Finite-Element Analysis of Axisymmetric Cavity
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Abstract—A modified finite-element technique for the analysis
of axisymmetric cavities is presented. In this analysis an edge
element approach is used in conjunction with a nodal approach
to represent all electric field components in the cavity. A bilinear
functional is formulated from which resonant frequencies and/or
field distributions are obtained. Several geometries are investi-
gated and corresponding results are presented as verification of
the method.

I. INTRODUCTION

N a previous paper the authors have investigated the

field behavior in coaxial geometries {1} for which the
configuration was uniform in the azimuthal, or ¢, direction
and the mode of operation was also invariant in this direction.
We refer to this class of problems as axisymmetric and perform
the analysis using techniques suitable for two-dimensional
geometries by considering any arbitrary ¢-plane. There ex-
ists, however, a class of circularly cylindrical geometries
for which the configuration is once again invariant in the
azimuthal direction, but the field behavior is not independent
of ¢. For this type of problem we usually have an a priori
knowledge of the azimuthal variation of the field behavior
in the configuration and may incorporate this information
into our analysis. Since the azimuthal variation is no longer
considered an unknown, we may approach the problem by
modifying the two-dimensional analysis to accommodate the
three-dimensional problem.

The investigation of field behavior in the circular cavity
resonator is an important problem in its own right. The use
of the circular cavity resonator in microwave application
has generated substantial interest, and both experimental and
numerical research have been performed [2]-[10]. For the
purposes of our investigation, we have employed a finite-
element method (FEM) technique. Although in the previous
investigation a nodal approach was used, implementing this
type of technique to the present problem resuits in spurious, or
nonphysical, modes. This is caused by the improper modeling
of the null space of the curl operator in the conventional
nodal finite-element formulation [11]. To model the null space
correctly, Lee, Sun, and Cendes [12] have suggested the use of
the edge-element method or the higher-order version, i.e., the
tangential vector finite-element method (TVFEM). The appli-
cation of the edge-element method and/or the TVFEM to study
two-dimensional dielectric waveguides [12], three-dimensional
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MMIC passive devices [13], and three-dimensional eddy-
current problems [14], has been successful and reported in
the literature. In the present investigation we modify the edge-
element technique for use in the modeling of axisymmetric
cavities.

In the axisymmetric problems, the azimuthal direction is
always tangential to the interface of material boundaries.
Therefore, a straightforward extension of the edge-element
approach is to use edge-elements together with nodal finite
elements for modeling the transverse and the azimuthal com-
ponents, respectively, of the field vector in the variational
formulation. However, as will be shown .in Section II, this
approach does not correctly model the null space of the curl
operator in the cylindrical coordinate system. As a result,
spurious modes are generated. To circumvent this problem,
a change of variables has also been introduced in Section III.
Through this change of variables, we are able to construct a
solution space that contains the null space of the discretized
curl operator and consequently reduces all the spurious modes
to zero eigenvalues.

In the remainder of this paper we present an overview of
the generalized axisymmetric problem. In Section II, a brief
discussion on the null space of the curl operator is presented.
A new and reliable vector finite-element formulation for mod-
eling axisymmetric field problems is proposed in Section IIL
Several numerical results are presented in Section IV to con-
firm the validity of the current approach. Also presented in
Section IV is a convergence study demonstrating second-order
accuracy in the eigenvalues obtained using the new method.
Finally, a brief conclusion is presented in Section V.

II. NULL SPACE OF THE CURL OPERATOR

In the cylindrical coordinate system, the curl operator can
be described as
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In (1), an e~7™¢ dependence for every component is assumed.
From (1), we see that a vector E™ is in the null space of the
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Fig. 1. Hybrid edge/nodal element.
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Fig. 2. Logarithmic plot of error versus relative size.

curl operator if and only if
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In a more compact notation, we can describe the null space of
the curl operator, in the cylindrical coordinate system, as

Apun = {E| (ijT) = —6T(PE¢)} ©)
where
Vo= by i @

We note from (3) that one independent function for (pEy) will
generate one null vector. Therefore, the dimension of A ) in
the discretized domain is the same as the number of degrees
of freedom of the (pEy)-component.

From (2) and (3), we see that in order to model the null
space correctly in the axisymmetric formulation, the unknown
variable, which is approximated by the conventional nodal
scalar finite elements, should be (pE,) instead of Ey.

III. FINITE ELEMENT FORMULATION
Beginning with Maxwells’s equations
ﬁ x H = jwaTaoﬁ

V x E = —jwprpoH (5)
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TABLE I
SUMMARY OF CONVERGENCE STUDY
1 1 1 1
h=1 h=3 h=7 h=g h=15
Nomber of
nodes 6 15 45 153 231
Number of
elements 4 16 64 256 400
Number of
nodal
unknowns 0 3 21 105 171
Number of
edge
unknowns 3 18 84 360 570
Total number
of unknowns 3 21 105 465 741
Number of
2610
eigenvalues 0 3 21 105 m
Number of
nonzero
eigenvalues 3 18 84 360 570
fo (MHz) 13.66 12.39 11.76 11.61 11.59
Errot (%) 18.26 7.27 1.82 0.52 0.35
we may obtain the vector wave equation
Vx—VxE koer =0 6)
o
where k3 = w?pugeo. By using Galerkin’s method [15] and

assuming the cavity is made of either perfect electric or
magnetic walls, we obtain the bilinear functional for the reso-
nator problem

F(EC,E)://V/KiﬁxE'C>-(ﬁxﬁ)

— k2e E°- E] av (7)

where E° is a testing function.

In order to accurately represent the field for any arbitrary
¢-plane, we must decompose the field into components both
transverse and normal to the plane of interest. That is, we
write

E=E, +¢B, ®)

Similarly, we define
1
V=V.+ ¢—% ©)

Using these definitions, the bilinear functional now becomes
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By noting from (3) that E, and ¢E¢ are out of phase by 7,
we may choose

E,. =¢& sinm¢
and

Ey = 6—;— cos me¢

G4y
where €, and e, are chosen to correctly model the null space
of the curl operator, as discussed in Section II. Using this
information and noting that dV = pdp d¢ dz, we may show

eSe
p

which is a real generahzed eigenvalue problem formulation.

The transverse components of the field may now be ap-
proximated in terms of edge unknowns and the azimuthal
components in terms of the nodal unknowns (see Fig. 1). There
is no inconsistency in this type of decomposition since Ey is
tangential to all boundary surfaces in the plane of interest
and the condition that E;, = 0 on the conducting surfaces is
easily satisfied. Similarly, since the edge unknowns represent
the projection of the electric field onto a given edge of the
triangular element, the condition that

] dpdz (12)

i E. =0 (13)

is also readily satisfied, where ¢ is the unit vector tangential
to the conductor surface. An advantage of the application of
the edge element technique is that, because of the use of
E as a state variable, we may, without difficulty, enforce
the Dirichlet boundary condition for the electric field on the
perfect conductor surfaces.

As previously mentioned in Section II, we have chosen
edge-elements as the vector basis function for the transverse
component. We may therefore express the electric field com-
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Fig. 3. Air-filled cylindrical resonator with L = 2a and ﬁeld patterns of
azimuthal electric field component for relative sizes (a) h = 2 ;) b=+
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and

(15)

ey = Z Ve Am

where Wmn is the vector basis function for edge {mn} and
Am 1s the first-order Lagrange interpolation polynomial for
node m [16]. From our choice of €4 o pFEy4 we see that
ey = 0 at p = 0 for all azimuthal modes since Fy is finite
at this location. It has been noted [17], however, that while
e, = 0 at p = 0 for azimuthal modes m # 0, e, has a finite
nonzero value for m = 0 and & is subsequently treated as an
unknown at the center of the cavity.
Finally, by enforcing the requirement that

F(e,8) =0

for any testing function € © in the testing function space, we
obtain the generalized cigenmatrix equation

[Ale = k§[Ble

(16)

17)

where

"4 ¢ =//Q{

and

T(Ble — e gy Cote
ng—/LwP@ &)+ p}@w 19)

IV. NUMERICAL RESULTS

In assembling the eigensystem we notice that there are
singular terms when p — 0. A common practice is to apply
a transformation of the form F' = ,/pf [18] to eliminate this
singularity, where f is now the quantity to be approximated.
However, an alternate approach is to utilize numerical inte-
gration techniques [15]. A seven-point numerical integration
provides acceptable accuracy.

The convergence of the current method is illustrated in
Fig. 2, where h represents the relative size of an individual
mesh element. The test geometry is an air-filled circular
cavity for which the cavity length is twice the radius and
the TE{;; mode is dominant with a resonant frequency of
fo = 11.55 MHz. The convergence is governed by & o« AV,
where ¢ is the error relative to the exact solution [19] and N is
the value to be determined, i.e., the rate of convergence. From
the figure, we see that as h is decreased, the slope of the error
is asymptotic to the line of slope 2, corresponding to V = 2,
i.e., € oc h%. Table I summarizes the convergence study.

A measure of the effectiveness of the numerical method
arises from observing the field pattern. Figure 3 shows the
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ubstrate Dielectric Air
£= 255 er=385

Fig. 4. Cylindrical dielectric resonator investigated by Kooi et al
L=5mm; R=65mm R; =9.75 mm; ¢t = 0.762 mm; H = 5 mm.

Fig. 5. Field pattern for dominant mode of resonator in Fig. 4.

geometry of interest and illustrates the electric field strength
for the azimuthal component of the fundamental mode in
the resonator. Due to the symmetry of the problem, it is
necessary to perform analysis and present results for only
one azimuthal plane of the geometry. The field pattern also
indicates convergences as h is decreased. The patterns for the
cases h = %, h = %, h = %, and h = % are presented.

A point of observation is that there is a one-to-one corre-
spondence between the number of nodal unknowns and the
number of zero eigenvalues, as suggested in Section II. This
is in general true for the modes corresponding to m. > 0,
for which €; and e4 both vanish at p = 0. For the modes
corresponding to m = 0, the number of zero eigenvalues
exceeds the number of nodal unknowns due to the additional
unknowns at p = 0. These unknowns represent the fact that,
for m = 0, € is nonzero at the center of the cavity, while
€4 Once again vanishes.

Several other examples are worth examining. Kooi et al.
[8] investigate the cylindrical dielectric resonator (Fig. 4)
operating in the so-called TEg1s mode, where § < 1. In this
problem the authors use a nodal approach since the geometry
and the field are ¢-invariant. A comparison of the resonant
frequencies for the dominant mode obtained by the nodal
approach versus the current method shows an agreement of
approximately 3%. Figure 5 illustrates the field behavior for
the dominant mode obtained by the current method.

Lebaric and Kajfez [9] use a finite integration technique
to analyze the dielectric resonator cavity in Fig. 6. The finite
element mesh used in the current study corresponds to 391
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Fig. 6. Dielectric resonator cavity investigated by Lebaric and Kajfez.

TABLE 11
COMPARISON OF RESONANT FREQUENCIES FOR
PROBLEM INVESTIGATED BY LEBARIC AND KAJFEZ

Lebaric/Kajfez | Lee/Wilking | Measured (GHz) | Exror of current
Mode (GHz) Mittra (GHz) Reference (9] | method with
measured[ 9]
%)
TEq; 7.037 7.169 6.943 3.26
HEMy 8.742 3.830 8.694 1.56
HEM;, 8.897 9.080 8.905 1.97
™y, 9.296 9.320 9.185 147
HEMj, 10.605 10726 10.558 1.59
™, 11113 11.164 10.943 2.02
HEM;3 11.226 11.490 11.184 294
TEy, 11.391 11766 11316 3.98

nodes and 704 triangular elements. Table II lists a comparison
of the resonant frequencies obtained by the two methods,
along with the relative errors for the current method. Figure 7
is a plot of the field behavior for the azimuthal component
for the dominant modes corresponding to m = 0, 1, and 2.
Keeping with the convention of the authors, this corresponds
to TEg,, HEM14, and HEM3;. The first subscript represents
the azimuthal mode 7 and the second subscript represents the
position in the ascending ordering for the resonant frequencies
for azimuthal mode m. \

Taheri and Mirshekar-Syahkal [10] use a one-dimensional
finite-element method to examine several loaded cylindrical
cavities. Results and relative errors for the diclectric rod
(Fig. 8) and the dielectric disk (Fig. 9) are given in Tables III
and IV respectively.
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Fig. 7. Azimuthal components for dominant modes corresponding to m = 0,
1, and 2 for the resonator of Fig. 6.
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Fig. 8. Cavity loaded with dielectric rod.

15.24 mm
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Z
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Fig. 9. Cavity loaded with diclectric disk.
TABLE III
COMPARISON OF RESONANT FREQUENCIES FOR

CaviTYy LOADED WITH DIELECTRIC RoD

Taheri/ Lee/Witkins/ Measured(GHz) | Error of current
Mode Mirshekar- Mittra Reference {2] method with

Syahkal (GHz) measured [2]

(GHz) : (%)
TMo1o Not available 1.497 1.554 3.668
HE 2.489 2.498 2.494 0.160
TEqyy Not available 3.059 3.108 1.577
HEg); 3.402 3.334 3.391 0.715
TMo1t 3.380 3.375 3.363 0.357
HEin 3.813 3.835 3.828 0.183
HE112 Not available 3.895 3.828 175
HE;3; Not available 4.539 4531 0.177

V. CONCLUSIONS

A generalized finite-element approach utilizing edge un-
knowns in conjunction with nodal unknowns has been pre-
sented for the analysis of axisymmetric circular cavities.
The method proves to be versatile and lends itself to many
applications. For instance, this approach can be modified
for use in design problems that are of great interest in the
development of electronic packaging techniques.
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TABLE IV
COMPARISON OF RESONANT FREQUENCIES FOR
CAvITY LOADED WITH DIELECTRIC DisK

Taheri/ Lee/Wilkins/ Measured Error of current
Mode Mirshekar- Mittra (GHz) (GHz) method with
Syahkal (GHz) Reference [3] | measured(3]
(%)
m; 3.435 3.508 3.428 2.334
HEy 4271 4266 4244 0.518
HE;2 4373 4.361 4.326 0.809
TMp 4.601 4,535 4.551 0.352
TEo2 5.493 5.462 5592 2,325
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